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Abstract: Following Lin and Maldacena, we find exact supergravity solutions dual to

a class of vacua of the plane wave matrix model by solving an electrostatics problem.

These are asymptotically near-horizon D0-brane solutions with a throat associated with

NS5-brane degrees of freedom. We determine the precise limit required to decouple the

asymptotic geometry and leave an infinite throat solution found earlier by Lin and Malda-

cena, dual to Little String Theory on S5. By matching parameters with the gauge theory,

we find that this corresponds to a double scaling limit of the plane wave matrix model in

which N → ∞ and the ’t Hooft coupling λ scales as ln4(N), which we speculate allows

all terms in the genus expansion to contribute even at infinite N . Thus, the double-scaled

matrix quantum mechanics gives a Lagrangian description of Little String Theory on S5,

or equivalently a ten-dimensional string theory with linear dilaton background.
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1. Introduction

Type IIA Little String Theory [1] describes the degrees of freedom of NS5-branes in type

IIA string theory in a decoupling limit where the string coupling gs is taken to zero keeping

α′ fixed (i.e. focusing on energies of order (α′)−1/2). What remains is believed to be a six-

dimensional interacting non-gravitational theory with a Hagedorn density of states. In the

infrared, the theory flows to the interacting (0,2) conformal field theory, but in general the
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theory does not have the properties of a local quantum field theory (in particular, it is

believed to be nonlocal). For a review of Little String Theory, see [2].

Since there is no direct Lagrangian description of the theory (though a DLCQ for-

mulation [3] and a description via deconstruction [4] have been proposed), the main tool

for analyzing Little String Theory has been its gravity dual, the near-horizon NS5-brane

solution of type IIA string theory, given for large r where the IIA picture is valid by

ds2 = N5α
′(−dt2 + d ~x5

2 + dr2 + dΩ2
3)

eφ = gse
−r

with N5 units of H flux through the S3. Even in this description, the theory is difficult

to work with, since the background contains a linear dilaton, sending the theory to strong

coupling (M-theory) in the infrared region of the geometry.

Recently, Lin and Maldacena [5] have found a related supergravity solution in which the

flat five-dimensional part of the geometry corresponding to the spatial NS5-brane worldvol-

ume directions has been replaced by an S5. We reproduce the (somewhat complicated) full

supergravity solution in appendix A, but for large radius, the metric and dilaton become

simply

ds2 = N5α
′ [2r

(

−dt2 + dΩ2
5

)

+ dr2 + dΩ2
3

]

eΦ = gse
−r ,

again with N5 units of H flux through the S3. We see that the new solution retains the

linear dilaton behavior and constant volume S3 permeated by H-flux, so it is natural to

associate this solution with NS5-branes on S5. However in this case, the full solution has

a tunable maximum value for the dilaton at r = 0 and a tunable maximum curvature, so

we have a regime where supergravity is everywhere valid.1 2

The main goal of this paper will be to explicitly describe a field theory dual for string

theory on this solution, and thus a Lagrangian field theory definition of Little String Theory

on S5.

The broader context for our story is a D0-brane quantum mechanics analogue of the

model of Polchinski and Strassler [10] for D3-branes. The field theory we consider is

the plane-wave matrix model [11], a mass-deformation of the maximally supersymmetric

D0-brane quantum mechanics. In our case, the mass deformation is maximally supersym-

metric, preserving 32 supercharges including an SU(2|4) symmetry [12 – 14]. The theory

has a discrete spectrum, a dimensionless parameter that acts as a tunable coupling con-

stant [15], and a large number of degenerate supersymmetric vacua preserving the SU(2|4)
supersymmetry.

Before the mass-deformation, the D0-brane quantum mechanics is dual to string theory

on the near-horizon D0-brane solution of supergravity [16]. As with the near-horizon NS5-

brane solution discussed above, this becomes strongly coupled in the infrared region of

1Unfortunately, the solution contains Ramond-Ramond fields, so string theory is difficult.
2A similar situation occurs in [6, 7], though in the present case, more of the R-symmetry is preserved. See

also [8] and [9] for discussions of the type IIB Little String Theory compactified on S2 and S3 respectively.
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the geometry, and we must go to an eleven-dimensional description. However, the mass-

deformation provides an infrared cutoff for the theory, so we might expect that solutions

dual to the various vacua of the plane-wave matrix model (for large enough mass) would

have an everywhere valid IIA description.

This picture was verified recently by Lin and Maldacena [5]. Following [17], they

searched for type IIA supergravity solutions with SU(2|4) symmetry, and showed that so-

lutions of type IIA supergravity corresponding to all vacua of the plane-wave matrix model

could be constructed in terms of the solutions to a class of axially symmetric electrostatics

problems involving charged conducting disks in 3 dimensions. While they did not solve

the electrostatics problem except in certain limiting cases, they showed that solutions of

this type generally contain throats with non-contractible 3-spheres carrying H-flux. These

regions of the geometry may be associated with fivebrane degrees of freedom described by

the matrix model.

In this paper, we focus on the simplest class of vacua of the plane-wave matrix model,

for which the dual geometry has only a single NS5-brane throat. We solve the appropriate

electrostatics problem to find an exact supergravity solution, and determine the precise

limit of this solution (which depends on three parameters) needed to decouple the throat

region, yielding the explicit infinite-throat solution of Lin and Maldacena corresponding

to Little String Theory on S5. By understanding how the parameters of the supergravity

solution match up with the parameters of the gauge theory, we then see what this limit

corresponds to in the matrix model. We find that the corresponding limit is a limit of large

N with the ’t Hooft coupling also taken to infinity in a particular way, roughly λ ∼ log4(N),

while focusing on the excitations around a specific vacuum of the matrix model (the one

corresponding to our original supergravity solution).

Since we are taking a strict large-N limit in the field theory, we might naively expect

that the corresponding gravity dual should be a free string theory. This is true asymptot-

ically, due to the linear dilaton background, but not for finite values of r, so there should

still be a genus expansion on the string theory side. We conjecture that this is reproduced

in the gauge theory in a way very similar to the double-scaling limits used to describe

low-dimensional string theories in terms of matrix models.3 In our case, the ’t Hooft cou-

pling is scaled towards a critical coupling λc = ∞ in such a way that the various terms in

the matrix model genus expansion all contribute despite N being infinite. Assuming this

picture is correct, we are able to make predictions for the large λ behavior of the full set

of genus n diagrams in perturbation theory (section 6.1).

The paper is organized as follows. In section 2, we review various aspects of the plane-

wave matrix model, including decoupling limits that have been discussed in the past. In

section 3, we review the Lin-Maldacena ansatz for gravity duals to the matrix model vacua

and the electrostatics problems that need to be solved in order to find the solutions. We

then provide an exact solution for the simplest such problem, which requires determining

the potential due to parallel charged conducting disks in a specified background potential.

In section 4, we discuss the matching of parameters between the gravity solutions and the

3This conclusion was predicted by Herman Verlinde.
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matrix model. In section 5, we determine how to scale the parameters in our solution

to obtain the Lin-Maldacena solution for Little String Theory on S5, and then use the

correspondence with the gauge theory to determine the matrix model description of Little

String Theory on S5. We also discuss the limit that gives a solution dual to the maximally

supersymmetric theory of D2-branes on S2, and the gravity interpretation of the ’t Hooft

limit of the matrix model. In section 6, we discuss the results. In 6.1, we explore the

consequences of our result that the Little String Theory on S5 is obtained as a double

scaling limit of the matrix model. In section 6.2, we describe an infinite-parameter family

of supergravity solutions similar to (and with the same symmetries as) the Lin-Maldacena

solution, and speculate on the matrix model description of these. Finally in section 6.3,

we describe an application of our results to calculating energies of near-BPS states in the

geometry. Various appendices provide more technical results.

2. Gauge Theory

The plane-wave matrix model is described by a Hamiltonian [11]4

H = Tr

(

1

2
P 2

A +
1

2
(Xi/3)

2 +
1

2
(Xa/6)

2 +
i

8
Ψ>γ123Ψ

+
i

3
gεijkXiXjXk − g

2
Ψ>γA[XA,Ψ] − g2

4
[XA,XB ]2

)

(2.1)

where A = 1, . . . , 9, i = 1, . . . , 3, and a = 4, . . . , 9. Here, the scalars XA and 16-component

fermions Ψ are hermitian N × N matrices, and PA is the matrix of canonically conju-

gate momenta. In addition, we have a Gauss law constraint that requires physical states

to be invariant under the U(N) symmetry transformation that act on the matrices as

M → UMU−1. The model has one discrete dimensionless parameter, N , and a continuous

dimensionless parameter g.

The set of classical vacua for the model are described by Xa = 0, Xi = 1
3gJ i, where

J i give any N dimensional representation of the SU(2) algebra

[J i, Jj ] = iεijkJk .

These vacua are in one-to-one correspondence with partitions of N , since we may have in

general nk copies of the k-dimensional irreducible representation such that
∑

k knk = N .

This model has several interesting large N limits (distinguished by which combination

of g and N we hold fixed), which we now describe.

The M-theory limit

According to the Matrix Theory conjecture [18], in the limit

N → ∞ g2/N3 fixed ,

4Here, all quantities are dimensionless. Appendix B gives the relation between these conventions and

the usual matrix theory conventions.
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this model should describe M-theory on the maximally supersymmetric plane-wave back-

ground of eleven-dimensional supergravity,5 with

µp+l2p =
N

g
2

3

p−/µ = H .

Note that the quantities on the left are boost-invariant and dimensionless.

States of M-theory on the plane-wave with zero light-cone energy are BPS configu-

rations involving concentric spherical membranes and/or concentric spherical fivebranes.

These correspond to vacua of the plane-wave matrix model [11, 19].

We will be particularly interested in vacua involving only one type of irreducible rep-

resentation, say N2 copies of the N5-dimensional irreducible representation,

Xi =
1

3g







J i
N5

{N2 copies}
. . .

J i
N5






. (2.2)

In the M-theory large N limit with N2 fixed, this configuration describes the state with N2

coincident M2-branes. This is plausible, since classically, such a configuration corresponds

to N2 coincident fuzzy spheres. On the other hand, if we keep N5 fixed in the limit, taking

N2 to infinity, the configuration gives us N5 coincident spherical M5-branes.6

In [19] it was pointed out that there are other interesting large N limits that do not

describe all of the degrees of freedom of M-theory, but rather focus in on degrees of freedom

associated with the spherical branes.

The D2-brane limit

To understand the next limit, consider the excitations around the vacuum (2.2) at finite

N . Classically, this configuration corresponds to N2 coincident (two-dimensional) fuzzy

spheres, on which the modes have maximum angular momentum N5. Fluctuations about

this configuration are then described by noncommutative gauge theory on a fuzzy sphere

with gauge group U(N2).

If we compare this action arising from the matrix model with an action written as

a noncommutative field theory with noncommutativity parameter θ and coupling g2 on a

sphere of radius r, we find that the field theory parameters are related to the matrix model

parameters via
θ

r2
=

1

N5
g2
2r =

g2

N5
Er = H .

Thus, by taking

N → ∞ g2/N fixed N2 fixed , (2.3)

we obtain a commutative field theory on a sphere. This field theory, written down in [19, 5]

is essentially the low-energy theory of D2-branes, with mass terms for the scalars and

5This background has ds2 = ds2
flat + (µ2

9
xixi + µ2

36
xaxa)dx+dx+ and F123+ = µ

6Evidence for this comes from the fact that the BPS excitations about this vacuum match the expected

BPS excitations of coincident spherical M5-branes [19].

– 5 –



J
H
E
P
1
0
(
2
0
0
6
)
0
1
8

fermions and a coupling of the radial scalar to the magnetic field, such that the whole

theory preserves SU(2|4) supersymmetry. Note that we end up with a D2-brane theory

instead of an M2-brane theory since the limit (2.3) does not decompactify the M-theory

circle.

We can also try to find a similar limit to describe decoupled fivebrane degrees of

freedom:

The ’t Hooft limit

For small values of g (with fixed N), we can study excitations about the various vacuum

states perturbatively. In [15], it was found that the parameter controlling perturbation

theory is different for different vacua. For the vacuum with N2 copies of the N5-dimensional

irreducible representation, perturbation theory is controlled by the combination g2N2, so

for example, the vacuum with N2 = 1, N5 = N is more weakly coupled than the vacuum

with N5 = 1, N2 = N .

In particular, in the limit

N → ∞ g2N fixed ,

the coupling associated with the fivebrane vacua (with fixed N5 with N2 → ∞) remains

finite, while the coupling associated with the membrane vacua (fixed N2 with N5 → ∞) or

any other generic vacuum goes to zero.

Again, this limit does not decompactify the M-theory circle, so it was suggested in [19]

(also based on supergravity arguments) that this limit describes NS5-branes on a sphere.

Below, we will see that it is a somewhat modified limit that is dual to the Lin-Maldacena

gravity solution for NS5-branes on S5.

3. Gravity

In the previous section, we have described the plane-wave matrix model, and various in-

teresting large-N limits. At finite N , we can think of the matrix model as a massive

deformation of the maximally supersymmetric quantum mechanics describing low-energy

D0-branes in flat-space, similar in spirit to the deformation of N = 4 SYM considered by

Polchinski and Strassler [10]. The gravity dual of the undeformed theory is string theory

on the near-horizon D0-brane geometry, so we expect that the gravity dual for the plane

wave matrix model should be some infrared modification of this.

Recently, Lin and Maldacena [5] (following [17]) searched for type IIA supergravity

solutions preserving the same SU(2|4) symmetry as the vacua of the plane-wave matrix

model. Using an ansatz with this symmetry (reproduced in appendix A), they were able

to reduce the problem of finding supergravity solutions to the problem of finding axially-

symmetric solutions to the three-dimensional Laplace equation, with boundary conditions

involving parallel charged conducting disks and a specified background potential.

– 6 –
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The electrostatics problem

Common to all vacua, we have in the electrostatics problem an infinite conducting plate at

z = 0 (on which we may assume that the potential vanishes), and a background potential7

V∞ = V0(r
2z − 2

3
z3) . (3.1)

In addition, corresponding to a matrix model vacuum with Qi copies of the di-dimensional

irreducible representation, we have conducting disks with charge Qi parallel to the infinite

plate and centered at r = 0, z = di. In order that the supergravity solution is non-singular,

the radii Ri of the disks must be chosen so that the charge density at the edge vanishes.8

Thus, for each vacuum of the plane-wave matrix model, we have an electrostatics

problem, whose solution (a potential V (r, z)) feeds into the equations (A.1) to give a

supergravity solution.

Properties of the supergravity solutions

We briefly review some properties of the supergravity solutions [5]. It is straightforward to

show that as expected, all of these supergravity solutions approach asymptotically the near-

horizon D0-brane solution. In the infrared region, the solutions have interesting topology,

as we now recall.

The coordinates r and z in the electrostatics problem form two of the nine spatial

coordinates in the geometry. In addition, for each value of r and z, we have an S2 and

an S5 with varying radii. The S5 shrinks to zero size on the r = 0 axis, while the S2

shrinks to zero size at the locations of the conducting plates, so we have various non-

contractible S3s and S6s corresponding to paths that terminate on different plates or on

different segments of the vertical axis respectively. This is illustrated in figure 1. As shown

in [5], through an S6 corresponding to a path surrounding plates with a total charge of

Q, we have N2 = 8Q/π2 units of flux from the dual of the Ramond-Ramond four-form,

suggesting the presence of N2 D2-branes. Similarly, through an S3 corresponding to a path

between plates separated by a distance d, we have N5 = 2d/π units of H-flux, suggesting

that this part of the geometry between the plates is describing the degrees of freedom of

N5 NS5-branes.

If we take large plates at a fixed separation, the region between the plates corresponds

to a long throat in the geometry with NS5-brane flux. Below, we will understand how to

take a limit where such a throat becomes infinite so that we recover the Lin-Maldacena

geometry.

7This potential results by taking point charges ∓Z4/3 at r = 0, z = ±Z in a constant electric field
~E = − 2

3
Z2ẑ in the limit Z → ∞.

8To see that this should be possible, note that without a background field, the charge density on a

conducting disk diverges as an inverse square root near the edge. On the other hand, we have an inward

electric field coming from the background potential that increases linearly with the radius of the disk. Thus,

for a large enough disk, the tendency for the charge on the disk to bunch up at the edge should be balanced

by the action of the inward electric field so that the charge density vanishes.
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k
Q

1Q

d

Figure 1: Mapping between matrix model vacua, electrostatics configurations, and geometries.

For illustrative purposes, we have replaced the S2×S5s associated to each point (r, z) with S0×S0.

In the full geometry, the dotted segment maps to a submanifold Σ6 that is topologically S6 × S2

(simply connected) rather than the S1 × S0 shown here. Similarly, the dashed segment maps to a

submanifold Σ3 that is topologically S5 × S3 rather than the S0 × S1 here.

Solution to the electrostatics problem (simplest case)

We will now solve the electrostatics problem above in the simplest case of a single disk above

the infinite plate, with the space in between corresponding to a single NS5-brane throat.

Thus, we would like to find the potential for a conducting disk of charge Q = π2N2/8 a

distance d = πN5/2 above the infinite conducting plate, in the presence of the background

field (3.1), as shown in figure 2. This will give the geometry dual to the matrix model

vacuum with N2 copies of the N5 dimensional irreducible representation.

We can simplify the problem somewhat using the the fact that electrostatics is linear

– 8 –
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2d

−Q

Q

R

E

z

r

Figure 2: Electrostatics problem (cross section) corresponding to gravity solutions with single NS5

throat. The method of images has been used to replace the infinite conducting plate with an image

disk.

and scale-invariant. Thus, if

V = (r2z − 2

3
z3) + φκ(r, z)

is the solution to the electrostatics problem above with V0 = 1, R = 1, and d = κ (with

Q = q(κ) determined by the condition of vanishing charge density at the edge of the disk),

then the solution to the general problem will be

V = V0(r
2z − 2

3
z3) + R3V0 φ d

R
(r/R, z/R) , (3.2)

and the charge on the disk will be

Q = q(d/R)V0R
4 . (3.3)

Note that φ is the part of the potential that vanishes at infinity, arising from the charges

on the disks. We would now like to determine φκ(r, z).

We may assume that the potential vanishes on the infinite conducting plate. Let us

call the (constant) potential on disk V = ∆. This will be determined in terms of κ by the

condition that the charge density vanishes at the edge of the disks, but for now, we will

take it to be arbitrary and solve for the potential in general.

– 9 –
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By the method of images, the potential will be the same as for a pair of conducting disks

at z = ±κ with potentials V = ±∆, with the potential going like V → zr2− 2
3z3 at infinity.

Without the background potential, this is a classic problem in electrostatics, considered by

Maxwell, Claussius and Helmholtz, Kirchhoff, Polya and Szego, and eventually solved by

Nicholson [20] and Love [21]. For these references and a nice summary, see [22]. Fortunately,

the method of solution may easily be extended to our case with the background potential,

as we describe in appendix C.

To give the solution, it is convenient to define

β = ∆ +
2

3
κ3 . (3.4)

Then the potential is given by

φκ(r, z) =
β

π

∫ 1

−1
Gκ(r, z, t)fκ(t)dt , (3.5)

where

Gκ(r, z, t) = − 1
√

r2 + (z + κ + it)2
+

1
√

r2 + (z − κ + it)2

and

fκ(t) = f (0)
κ (t) − 2

κ

β
f (2)

κ (t) . (3.6)

The functions f
(n)
κ (t) are special functions solving the integral equation

f (n)
κ (t) −

∫ 1

−1
Kκ(t, x)f (n)

κ (x) = tn (3.7)

with kernel

Kκ(t, x) =
1

π

2κ

4κ2 + (x − t)2
.

This is a Fredholm integral equation of the second kind, and the solution may be

written as a series

f (n)
κ (t) =

∞
∑

m=0

Km
κ ◦ tn (3.8)

where

(K ◦ g)(t) ≡
∫ 1

−1
K(x, t)g(x) .

It may be shown that the series converges for any value of κ > 0 to define a bounded

continuous function f
(n)
κ (t).

The function f is related to the charge density on the disk as

fκ(t) =
2π

β

∫ 1

t

rσκ(r)dr

(r2 − t2)
1

2

σκ(r) =
β

π2

[

fκ(1)

(1 − r2)
1

2

−
∫ 1

r

f ′
κ(t)dt

(t2 − r2)
1

2

]

, (3.9)

so that the total charge on the disk is

q(κ) =
β

π

∫ 1

−1
fκ(t)dt . (3.10)

– 10 –
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Figure 3: Plot of q(κ). Dashed lines are the asymptotes 8

3π
κ for large κ and 1/8+0.711κ for small

κ.

Vanishing charge density constraint

The solution in the previous section was for arbitrary potential ∆, and will generally have

a charge density that is nonvanishing at the tip of the disk. We will now determine a

formula for ∆(κ) for which the charge density vanishes.

From (3.9), it follows that σ(1) = 0 if and only if f(1) = 0 and f ′(1) is bounded. From

the series solution, it is straightforward to prove that the latter condition is always satisfied

for the functions fn(t), so our constraint comes from requiring f(1) = 0. Now, from (3.6)

and the definition (3.4) of β, we see that the condition f(1) = 0 determines ∆ to be

∆(κ) = 2κ
f

(2)
κ (1)

f
(0)
κ (1)

− 2

3
κ3 . (3.11)

Finally, the charge on the disk is given in terms of κ by

q(κ) =
f

(2)
κ (1)

f
(0)
κ (1)

2κ

π

∫ 1

−1
f (0)

κ (t)dt − 2κ

π

∫ 1

−1
f (2)

κ (t)dt . (3.12)

Via equation (3.3) this function q determines the radius of the disk in the original

problem in terms of the charge Q, the potential V0, and the separation d. The function q

is plotted in figure 3. We show in appendix C.1 that its limiting behavior for small and

large κ is

q(κ) → 1
8 κ → 0 ,

q(κ) → 8
3πκ κ → ∞.

(3.13)

We will see in section 6.3 that the function q(κ) is physically important since it computes

the energies of certain near-BPS states in the theory.

– 11 –
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Summary

In summary, to generate the supergravity solution dual to the vacuum of the plane-wave

matrix model corresponding to N2 copies of the N5 dimensional irreducible representation,

we:

• choose κ (ultimately related to a choice of coupling g), determine φκ(r, z) from (3.5)

and q(κ) from equation (3.12)

• take R = (πN5)/(2κ) so that d = Rκ = πN5/2

• choose V0 = (2κ4N2)/(q(κ)π2N4
5 ) so that (using (3.3)) Q = q(κ)V0R

4 = π2N2/8

Then the gravity dual is given by equations (A.1) with V given by (3.2).

4. Matching Parameters with Gauge Theory

In discussing the various scaling limits of the theory, we will need to understand how

the gauge theory parameters match with the parameters in the supergravity solution, or

equivalently, with the parameters d, R, Q, and V0 in the electrostatics problem. As we

mentioned, the parameters d and Q are proportional to the number of units of NS5-brane

and D2-brane flux through the noncontractible S3 and S6 in the geometry. As shown in [5],

this allows us to associate 9

d =
π

2
N5

and

Q =
π2

8
N2 .

The remaining electrostatics parameter is V0 (or equivalently, R), which we interpret

in the gauge theory as follows. The asymptotic form of the geometry is determined by

the background field in combination with the leading dipole fields arising from the charges

on the plates. These depend respectively only on V0 and the combination dQ, which is

proportional to the dipole moment. These asymptotics should be the same for all vacua of

a given theory, so the parameters V0 and dQ must depend only on g and N = N2N5, the

parameters that determine which matrix model we are talking about. This is clearly true

for dQ, but we must also have

V0 = f1(g
2, N2N5) . (4.1)

To further constrain V0 it is useful to note that in the gauge theory, the planar am-

plitudes depend only on N5 and the combination g2N2. This suggests that the free string

theory on the dual spacetime should be controlled by these two parameters, and in partic-

ular, these parameters should control the metric. In terms of the electrostatics parameters,

it is straightforward to see that the metric depends only on d and R (scaling V0 while

holding these fixed scales the dilaton and Ramond-Ramond fields, but leaves the metric

9Note that we have taken all quantities in the electrostatics problem to be dimensionless.
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fixed), so d and R should each be some function of N5 and g2N2. This is clearly true for

d, but we must also have

R = f2(g
2N2, N5) . (4.2)

Using the relation Q = V0R
4q(d/R), together with (4.1) and (4.2) we may conclude that

V0 =
1

g2
h(g2N2N5) (4.3)

for some function h.

In section 5.1, we will see that the D2-brane limit of the gauge theory discussed in

section 2 matches with the corresponding limit of the supergravity solution only if the

function h approaches some constant h∞ at large values of its argument. Since we will

mostly be interested in this regime (g2N2N5 is always large when supergravity is valid),

we get the identification

V0 =
h∞
g2

. (4.4)

The electrostatics parameter R is a more complicated function of the gauge theory param-

eters, but follows from the other identifications via (3.3).

5. Scaling limits

In this section, we consider various scaling limits of the gravity theory in which one of

the three parameters is scaled to infinity, with the others scaled such that we end up with

something nontrivial.

5.1 Large d: the D2-brane limit

We begin by considering a limit of large d with fixed R. To understand how we should

scale V0 to leave us with a nontrivial supergravity solution, note that for large d/R, the

formula (3.3) determining the charge on the disks becomes

Q =
8

3π
V0dR3 , (5.1)

where we have used the large κ behavior of q(κ). Also, the potential (3.1), taken near the

position of the disk by replacing z = d + η, becomes

V = −2

3
V0d

3 − 2V0d
2η + V0d(r2 − 2η2) + V0(ηr2 − 2

3
η3) . (5.2)

The first two terms here have no effect on the supergravity solution, since the solution (A.1)

depends only on ∂2
zV and ∂rV . Thus, from (5.2) and (5.1), we see that in order to leave

a finite nontrivial background potential and a finite non-zero charge on the disk, we must

take V0 to scale like 1/d. Thus, our limit is

d → ∞ Q fixed V0d = W0 fixed . (5.3)
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In this limit, we have a single charged conducting disk (with no infinite plate) in a back-

ground potential

V = W0(r
2 − 2η2) . (5.4)

In [5] Lin and Maldacena wrote down explicitly the geometry corresponding to this

situation. In appendix D, we give an alternate derivation of the solution by explicitly

solving the electrostatics problem, verifying that (5.1) correctly gives the charge necessary

to ensure that the charge density vanishes at the edge of the plates. For large r, the solution

approaches the solution for near-horizon D2-branes but with the flat directions along the

D2-branes replaced by an S2 [5]. Thus, we expect that this limit should correspond to

the limit of the matrix model giving rise to D2-branes on S2. Using the correspondence

between matrix model parameters and electrostatics parameters (in particular, assuming

that the function h in (4.3) is simply a constant at large argument), we find that the

limit (5.3) becomes,

N5 → ∞ N2 fixed
g2

N5
fixed,

which is precisely the D2-brane limit discussed in section 2.

5.2 Large V0: the ’t Hooft limit

The next limit we consider is the ’t Hooft limit discussed in section 2,

N2 → ∞ N5 fixed g2N2 fixed,

which appeared to be a decoupling limit retaining interacting fivebrane degrees of freedom.

Using the correspondence between matrix model parameters and electrostatics parameters,

we find that this is a limit with

Q → ∞ d fixed R fixed V0 → ∞

From the supergravity point of view, this is a limit in which the metric is held fixed with

the maximum value of the dilaton going to zero. Thus, we have free string theory on the

background corresponding to a single finite-sized disk above the infinite conducting plate.

This geometry contains a finite throat region with NS5-brane flux, but also a non-

contractible S3 with D2-brane flux. Thus, while we are describing fivebrane degrees of

freedom, this limit of the gauge theory does not correspond to the infinite-throat Lin-

Maldacena solution for NS5-branes on S5.

5.3 Large R: Little string theory on S5

Finally, we would like to understand precisely what limit of our solution is required to

obtain the Lin-Maldacena infinite-throat solution for NS5-branes on S5. This corresponds

to an electrostatics problem with two infinite conducting plates, with the potential between

the plates equal to

V =
1

g0
sin

(πz

d

)

I0

(πr

d

)

. (5.5)
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To obtain this from our solution, we certainly need to take a limit where R is going to

infinity with d fixed. However, generically, we would simply end up with a constant vertical

electric field between the plates. This does not give rise to any metric (the supergravity

fields depend only on ∂2
zV and ∂rV ) so we must take V0 large enough so that the leading

corrections to this constant electric field remain nonzero in the limit.

To understand the proper scaling, we start by considering the electrostatics solution

for finite R. In the r < R region between the plates, we have an axially symmetric solution

to the Laplace equation regular at r = 0, so we can write

V (r, z) = Vz=d
z

d
+

∞
∑

n=1

cn sin
(nπz

d

)

I0

(nπr

d

)

.

Here, we have separated off a constant electric field term that does not affect the metric

such that the remaining piece vanishes at z = 0 and z = d for r < R. Now the cns are

determined by the potential at r = R,

cn =

(

I0

(

nπR

d

))−1

V0R
3 2

d

∫ d

0
dz

(

1

R3
(R2z − 2

3
z3) + φ d

R
(1,

z

R
) − ∆ d

R

z

d

)

sin
(nπz

d

)

(5.6)

where we have used the expression (3.2) for V . Using our solution for φ, it is simple to

show that the integral here has only a power law dependence on R, so the large R behavior

of cn is dominated by the exponential damping coming from the Bessel function at large

argument,

(I0(z))−1 ∼
√

2πze−z .

To compensate for this damping, we must scale V0 exponentially in R,

V0 ∼ e
πR
d , (5.7)

which allows us to keep c1 finite in the limit. All the other coefficients cn>1 still vanish

in the limit, so we indeed end up with the Lin-Maldacena solution. To be more precise,

we can evaluate the integral in (5.6) to find the prefactor in (5.7). Using the results of

appendix C.1, we find the behavior

c1 → V0 C (Rd)
3

2 e
−πR

d (5.8)

where we have numerically estimated C to be C ≈ 0.080. Thus, the precise limit we need

to take to recover (5.5) is

R → ∞ d fixed V0 → 1

g0

1

C
(Rd)−

3

2 e
πR
d ,

which also implies Q → ∞.

In supergravity language, the limit we are taking is designed to take the NS5-brane

throat infinite while holding the dilaton at the bottom of the throat fixed. The fact that V

is exponentially damped as we go towards the middle of the plates gives rise to the linear

dilaton behavior of the final supergravity solution.
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Field theory description

Using the correspondence of parameters between field theory and the electrostatics we find

that the limit of the plane-wave matrix model that defines the dual of the Lin-Maldacena

solution, i.e. the field theory description of Little String Theory on S5, is

N2 → ∞ N5 fixed
1

g2
λ

3

8 e−aλ
1
4 /N5 fixed . (5.9)

where a is a numerical coefficient related to the constant in (4.4) by a = 2(π2/h∞)
1

4 . Thus,

rather than holding the ’t Hooft coupling fixed, we scale it to infinity in a controlled way

λ ∼ N4
5 ln4(N2) . (5.10)

Unfortunately, this implies that perturbation theory is not useful on the field theory side,

though perhaps there are some near-BPS sectors of the theory where the expansion pa-

rameter is not the naive ’t Hooft coupling.

6. Discussion

6.1 The double-scaling limit

We have seen that to obtain the field theory dual of the Lin-Maldacena supergravity solu-

tion for Little String Theory on S5, we need to take a large N2 limit while scaling the ’t

Hooft coupling to infinity in a controlled way. This double scaling limit is reminiscent of

limits used to define low-dimensional string theories in old matrix models (see for exam-

ple [23]). There, the ’t Hooft coupling is scaled to some critical value in a controlled way

as N goes to infinity, such that all terms in the genus expansion continue to contribute

even though N becomes infinite. We suspect that this is also the situation here, except

that in our case, the “critical” value of the ’t Hooft coupling is infinity. The fact that

N2 becomes infinite is consistent with the fact that the dilaton vanishes asymptotically in

the supergravity solution. On the other hand, we still have a string genus expansion in

the bulk of the supergravity solution, so we can understand the scaling of λ to infinity as

necessary for the gauge theory to reproduce nontrivial string interactions in the bulk.

To understand this in more detail, consider the matrix model genus expansion for some

physical observable. It takes the form

F =
∑

n

fn(g2N2, N5)

Nn
2

(6.1)

where fn(λ,N5) gives the sum of genus n diagrams. In the ’t Hooft limit with λ = g2N2

fixed and N2 taken to infinity, only the planar n = 0 term contributes. What we are

suggesting is that the scaling (5.10) is such that all terms in the expansion (6.1) contribute.

If this is true, it predicts that the large λ behavior of fn is

fn(λ) → an

[

λ
5

8 e
aλ

1
4

N5

]n

. (6.2)
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The quantity in square brackets divided by N2, which we can call g̃, is the inverse of the

quantity being held fixed in (5.9), so the genus expansion (6.1) becomes

F =
∑

n

ang̃n ,

Thus, the constant g̃ serves as the effective string coupling.

The behavior (6.2) is a nontrivial prediction of our results and the assumption that

the string theory genus expansion is still related to the gauge theory genus expansion. It

should apply to the behavior of any physical observable that survives the scaling limit, for

example the energy of any state in the matrix model corresponding to some excitation in

the NS5-brane throat. It would be interesting to understand more precisely from the gauge

theory point of view which set of observables remain in the limit.

Unfortunately, it seems difficult to check the behavior (6.2) directly from the gauge

theory, since it would involve summing infinite sets of diagrams. However, it may be that

this is possible for certain BPS or near-BPS observables, as for the circular Wilson loop in

N = 4 supersymmetric Yang-Mills theory, where for example the full contribution at the

planar level is given by an infinte set of ladder diagrams that can be summed explicitly [24].

Intriguingly, that result

〈W 〉N=∞ =

√

2

π
λ− 3

4 e
√

λ

takes a rather similar form to our prediction here.10 A specific limit in which some matching

similar to [11] might be possible is in a Penrose limit of the geometry [25], associated with

geodesics around the S2 at r = 0.

6.2 An infinite parameter family of NS5-brane solutions

Starting from our exact supergravity solution for the simplest class of vacua, we have found

a specific limit that gives the Lin-Maldacena solution corresponding to the region between

two infinite conducting plates. It is interesting to note that this solution is actually the

simplest in an infinite-parameter family of solutions. In the electrostatics language, we can

have any function

V =

∞
∑

n=1

cn sin
(nπz

d

)

I0

(nπr

d

)

with cn chosen to fall off fast enough so that the sum converges for all r. The supergravity

solution corresponding to any such potential will have an infinite throat with noncon-

tractible S3 carrying fivebrane flux.

While it does not seem possible to obtain these more general solutions as limits of

the solution we considered in this paper, it is plausible that we could obtain them as

limits of solutions corresponding to more general vacua of the plane-wave matrix model.

Specifically, we could imagine starting with a solution containing some arbitrarily large

number of disks, taking the size of the lowest disk to infinity as before, but now tuning all

10Note that the
√

λ in this example and the λ
1

4 in our case both represent the squared radius of the

respective S5s in string units.
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of the parameters V0, d2, Q2, . . . , dn, Qn in such a way that all of the upper disks have

some non-trivial influence on the potential between the plates. It would be interesting to

understand better the physical interpretation of these more general solutions.

6.3 Energies of near-BPS states

A useful result coming from our solution is the formula (3.3) that determines the radius

of the disk in terms of the other parameters d, Q, and V0. From the supergravity solu-

tion (A.1), it is straightforward to show [5] that R determines the radius of the S5 at the

point (r = R, z = d) corresponding to the edge of the disk as11

R2
S5/α

′ = 4R.

As described in [5] section 2.2, this in turn determines the energies of certain near-BPS

states with large angular momentum on the S5 (see equation (2.42)).12 Thus, our function

q(κ) in (3.3), defined in (3.12) and plotted in figure 3, determines the near-BPS energies

for large R and d but arbitrary d/R, interpolating between the small d/R and large d/R

results given in [5], equations (2.84) and (2.57) respectively.

6.4 Other definitions of Little String Theory on S5

Finally, we note that while the limit we have defined may be the simplest description of the

Little String Theory on S5, there should be many other field theoretic definitions. In the

electrostatics picture, it should arise any time two nearby disks are scaled to infinite radius

at fixed separation with the background potential scaled so that the potential between

the plates remains nontrivial. Thus, we could start with more general vacua of the plane

wave matrix model, vacua of the D2-brane field theory on S2, or vacua of N = 4 SYM on

R × S3/Zk.
13 It would be interesting to understand more precisely the field theory limits

for these other cases also.
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A. Supergravity solutions

The general Lin-Maldacena SU(2|4)-symmetric supergravity ansatz (suppressing an overall

factor of α′ in the metric) is given by [5]

ds2
10 =

(

V̈ − 2V̇

−V ′′

)1/2 {

−4
V̈

V̈ − 2V̇
dt2 +

−2V ′′

V̇
(dρ2 + dη2) + 4dΩ2

5 + 2
V ′′V̇

∆
dΩ2

2

}

e4Φ =
4(V̈ − 2V̇ )3

−V ′′V̇ 2∆2

C1 = − 2V̇ ′ V̇

V̈ − 2V̇
dt (A.1)

F4 = dC3, C3 = −4
V̇ 2V ′′

∆
dt ∧ d2Ω,

H3 = dB2 , B2 = 2

(

V̇ V̇ ′

∆
+ η

)

d2Ω

∆ ≡ (V̈ − 2V̇ )V ′′ − (V̇ ′)2

Their explicit solution corresponding to Little String Theory on S5 is

ds2
10 = N5

[

−2r

√

I0

I2
dt2 + 2r

√

I2

I0
dΩ2

5 +

√

I2

I0

I0

I1
(dr2 + dθ2) +

√

I2

I0

I0I1s
2

I0I2s2 + I2
1c2

dΩ2
2

]

B2 = N5

[ −I2
1cs

I0I2s2 + I2
1c2

+ θ

]

d2Ω (A.2)

eΦ = g0N
3/2
5 2−1

(

I2

I0

) 3

4
(

I0

I1

)1

2
(

I0I2s
2 + I2

1c2
)− 1

2 (A.3)

C1 = −g−1
0 N−1

5

4I1
2c

I2
dt (A.4)

C3 = −g−1
0

4I0I
2
1s3

I0I2s2 + I2
1c2

dt ∧ d2Ω (A.5)

where g0 is a constant, In(r) are the usual Bessel functions, s ≡ sin(θ), and c ≡ cos(θ).

B. Matrix model conventions

In the usual conventions, the plane-wave matrix model is described by a Hamiltonian

H = M2
p RTr

(

1

2
P 2

A − 1

4
[XA,XB ]2 − 1

2
Ψ>γA[XA,Ψ]

)

+
M2

p R

2
Tr

(

(

µ

RM2
p

)2

(Xi/3)
2 +

(

µ

RM2
p

)2

(Xa/6)
2

+
i

4

(

µ

RM2
p

)

Ψ>γ123Ψ +
2i

3

(

µ

RM2
p

)

εijkXiXjXk

)

. (B.1)

With these conventions, the large N limit with µ fixed and N/R fixed describes the sector

of M-theory on the plane-wave background with

P+ =
N

R
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and P− identified with H. In the conventions of this paper, we define

g2 =

(

M2
p R

µ

)3

and we take

X̃ = g−
1

3 X H̃ =
1

µ
H,

where the tilded quantities are the ones used in the rest of this paper.

C. Solution of the electrostatics problem

In this appendix, we describe the solution of the electrostatics problem described in sec-

tion 3, namely to find a solution of Laplace’s equation

∇2V = 0

such that V = 0 at z = 0, V = ∆ for {z = κ, 0 < r < 1} and V behaves as zr2 − 2
3z3 for

large z2 + r2.

To start, we write

V = zr2 − 2

3
z3 + φ

so that φ vanishes at infinity and at z = 0 and is given by

φ(r) = ∆ +
2

3
κ3 − κr2 ≡ β(1 − αr2)

on the upper plate. Axially symmetric solutions to the Laplace equation that are regular

at r = 0 and vanish as r → ∞ are linear combinations of functions

e±zuJ0(ru),

where u is a continuous parameter. If we denote by V+ and V0 the function φ in the regions

z ≥ d and 0 ≤ z ≤ d respectively, then we must have

V0 =

∫ ∞

0
B(u) sinh(zu)J0(ru)du

V+ =

∫ ∞

0
C(u)e−zuJ0(ru)du (C.1)

taking into account the boundary conditions at z = 0 and z = ∞.

We now take into account the boundary conditions at z = κ. First, we must have

V0 = V+ at z = κ, so it must be that

B(u) = 2βu−1e−κuA(u)

C(u) = 2βu−1 sinh(κu)A(u)
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for some function A(u) (the prefactors have been chosen for later convenience). Also, we

have ∂zV0 = ∂zV+ at z = κ for r > 1 and V0 = V+ = β(1 − αr2) for 0 < r < 1. These will

be satisfied if
∫ ∞

0
A(u)J0(ru)du = 0 r > 1 (C.2)

∫ ∞

0
u−1(1 − e−2κu)A(u)J0(ru)du = 1 − αr2 0 < r < 1. (C.3)

This set of equations is of the type considered in [22], section 4.6, “Dual integral equations

with Hankel kernel and arbitrary weight function”. For convenience, we review the solution

of this type of equation in appendix E. For our specific case, the solution is given by

A(u) =
2u

π

∫ 1

0
f(t) cos(ut)dt ,

where f(t) is an even function of t satisfying the integral equation

f(x) −
∫ 1

−1
K(x, t)f(t)dt = g(x) , (C.4)

where

g(x) = 1 − 2αx2 (C.5)

and

K(x, t) =
1

π

2κ

4κ2 + (x − t)2
.

The solution f of the integral equation may be given as a series (3.8). Substituting our

solution for A in (C.1) gives the simpler result (3.5), valid for all z.

C.1 Limiting forms of the solution

In our discussion of scaling limits of the theory, it will be useful to have some explicit

results for the behavior of the electrostatics solution for large and small values of κ.

Large κ

For large κ, the kernel K has a small norm, so the series solution (3.8) is well approximated

by its leading term. Thus,

f(x) → g(x) = 1 − 2αx2 .

In order that the charge density vanishes at the edge of the plate, equation (3.9) implies

that f(1) must vanish. Thus, we must have

α =
1

2
,

which (for large κ) implies

∆ → −2

3
κ3 + 2κ .

This implies that β = 2κ, so that using (3.10), we have

q → 8

3π
κ .

As a check, we can match these results with those in appendix D, where we have solved

the electrostatics problem after first taking the limit of large d with fixed R.
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Small κ

For small κ, the problem is more difficult to study, since the norm of the kernel K ap-

proaches one (the kernel approaches a delta function), so the series solution (3.8) converges

very slowly. The work [26] studied in detail the case of charged conducting disks at small

separation without a background potential, but some of the general discussion there is

helpful in our case also.

Up to corrections of (fractional) order
√

κ, the leading small κ behavior of the solution

of the integral equation (C.4) is [26]

f(t) → κ−1

∫ 1

−1
k(s, t)g(s)ds ,

where

k(s, t) =
1

2π
log

{

1 − st + (1 − s2)
1

2 (1 − t2)
1

2

1 − st − (1 − s2)
1

2 (1 − t2)
1

2

}

.

This corresponds to the approximation that σ(r) varies as κ−1φ(r).

In our case, g is given by (C.5), so we find that

f(t) → 1

2κ

{

(1 − t2)
1

2 − α(1 − t2)
1

2 +
2

3
α(1 − t2)

3

2

}

. (C.6)

Now, in order that σ vanishes at the edge of the disk, (3.9) implies that f(1) vanishes and

that the f ′(1) is bounded. We see that the latter condition is satisfied only if α → 1 in this

limit.14 Thus, in the limit of small κ, we have

fκ(t) → 1

3κ
(1 − t2)

3

2 . (C.7)

From α → 1, we infer that

∆ → κ (C.8)

in the limit, and using (3.10) we have

q(κ) → 1

8
.

We are particularly interested in the small κ behavior of the integral (5.6), which after

a change of variables becomes

I =

∫ 1

0
dy sin(πy)

[

φκ(1, κy) −
{

∆κy − κy +
2

3
κ3y3

}]

. (C.9)

The largest terms are the first two terms in curly brackets, each of which give a contribution

of order κ, but (C.8) implies that these cancel. Using numerical methods described in

14For finite values of κ, the series solution (3.8) may be used to show that f ′(1) is actually bounded for

all t. On the other hand, corrections to the formula (C.6) are generally non-zero at t = ±1. Thus, the

vanishing charge density constraint for the exact solution at finite κ comes from the condition f(1) = 0.

We have verified numerically in appendix F that this condition gives the same result α → 1 in the limit

κ → 0 as the condition that f ′(1) is bounded applied to the leading approximation.

– 22 –



J
H
E
P
1
0
(
2
0
0
6
)
0
1
8

appendix F, we have estimated the remaining contributions. We find that there is a

further cancelation between the φ term and the term in curly backets, both of which give

contributions of order κ2 ln(κ). The net result is that the integral behaves for small κ as15

I ≈ 0.040κ2.

While this result is numerical, we have performed an analytic check on the method. If

we normalize the function

φ̃(x, y) = C

[

φκ(1 + x, κy) −
{

∆κy − κy +
2

3
κ3y3

}]

by choosing C such that (for example) φ̃(0, 0.5) = 1, then φ̃ should have a well definied

limit as κ → 0. This must be a nontrivial solution to the Laplace equation in the case

where we have one infinite conducting plate (at y = 0), and one semi-infinite conducting

plate (at y = 1, x < 0), with vanishing potential on both plates (recall that the term

invoving ∆ ensures that φ̃ vanishes on both plates). This reduces to a two-dimensional

problem that may be solved using conformal mapping techniques [5]. As explained in [5],

if we define a complex coordinate z = x + iy and another complex variable

w = 2∂zV = ∂xV − i∂yV .

Then the Laplace equation ensures that the mapping between z and w is analytic. Fur-

ther, ∂xV is everywhere nonnegative and vanishes at the plates, so the region outside the

plates must map to the right half plane, with the plates mapping to the imaginary axis.

The explicit transformation that acheives this (unique up to transformtions generated by

translations, scalings, and inversions that fix the imaginary axis) is [5]

z = iw +
1

π
ln(w) +

i

2
+

1

π
+

1

π
ln(π) . (C.10)

This implies

V = Re

(
∫ z

w(z′)dz′
)

= u

(

1

π
− v

)

,

where w = u + iv. From (C.10), we find that u and v are determined in terms of x and y

by

x = −v +
1

2π
ln(u2 + v2) +

1

π
+

1

π
ln(π)

y = u +
1

π
tan−1

(v

u

)

+
1

2
,

so we have a relatively explicit result for the potential in the limit. After normalizing

the result in the same way that we normalized φ̃, we find excellent agreement with our

numerical results for φ̃ in the limit of small κ.

15Note that here we cannot simply use the leading approximation (C.7) for f . The reason is that the

integral over t receives most of its contribution close to the boundaries of the interval [−1, 1] where the

leading approximation goes to zero like a 3/2 power. Corrections to (C.7), which are fractionally small in

the bulk of the interval, become more important in the region near the boundaries, and result in a modified

behavior for the integral.
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D. Single disk solution

In this appendix, we solve the electrostatics problem obtained in the limit of large d with

V0d = W0 fixed and R fixed, to give a more direct derivation of the asymptotically near-

horizon D2-brane solution derived by Lin and Maldacena.

To define this solution, we want to find the potential for a charged conducting disk of

radius R and charge Q in a background potential

V = W0(r
2 − 2η2) . (D.1)

In this case, the potential W0 will eventually be related to the charge, Q, and the radius,

R, by the condition that the charge density vanishes at the edge of the disk.

By the superposition and scale-invariance properties of electrostatics, the solution must

take the form

V = W0R
2φ(r/R, η/R),

where φ is the solution to the problem with W0 = 1 and R = 1. Further if q is the total

charge on the disk required in this simplified problem so that the charge density vanishes

at the edge of the disk, we must have

Q = W0R
3q.

To start, we would like to find a solution to Laplace’s equation with boundary condi-

tions that the potential is fixed to ∆ on a disk of radius 1 at z = 0 and becomes r2−2z2 at

infinity. The potential, ∆, and the total charge on the disk, q, will be fixed by demanding

that the charge density vanishes at the edges of the disk.

We begin by writing

V = r2 − 2z2 + φ ,

such that φ vanishes at infinity and

φ(r, z = 0) = ∆ − r2; .

If we denote by V+ the potential φ for z > 0, then separating variables gives

V+(r, z) =

∫ ∞

0
u−1A(u)e−uzJ0(ur)du . (D.2)

By symmetry, the potential V− for z < 0 must be

V−(r, z) = V+(r,−z) .

Finally, we require that

V+ = V− = ∆ − r2 0 ≤ r ≤ 1 ,

∂zV+ − ∂zV− = 0 r > 1.

These imply the dual integral equations
∫ ∞

0
A(u)J0(ur)du = 0 r > 1 (D.3)
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∫ ∞

0
u−1A(u)J0(ur)du = ∆ − r2 0 < r < 1, (D.4)

which are of the type considered in appendix E, with k(u) = 0 and h(r) = ∆ − r2. In this

case, the integral equation is trivial, so the result is

A(u) =
2u

π

∫ 1

0
f(t) cos(ut)dt

with

f(t) = g(t) = ∆ − 2r2 .

Substituting for A in (D.2) gives

V+ =
1

π

∫ 1

−1

f(t)
√

r2 + (z + it)2
dt

The charge density on the disk is given by

σ(r) =
1

4π
(∂zV−(r,−ε) − ∂zV+(r, ε))

=
1

2π

∫ ∞

0
A(u)J0(ur)du

=
1

π2

[

f(1)

(1 − r2)
1

2

−
∫ 1

r
ds

f ′(s)

(s2 − r2)
1

2

]

=
∆ − 2

π2

1√
1 − r2

+
4

π2

√

1 − r2 .

In order that the charge density vanishes on the tip, we need

∆ = 2 ,

so finally

σ(r) =
4

π2

√

1 − r2

and the total charge is

q =
8

3π
.

If we like, we can write an explicit solution for the potential using oblate spherical coordi-

nates (see [22], section 3.3), but we will not need it here.

E. Dual integral equations

In this appendix, we review the solution of dual integral equations of the form

∫ ∞

0
A(u)J0(ru)du = 0 r > 1 (E.1)

∫ ∞

0
u−1(1 + k(u))A(u)J0(ru)du = h(r) 0 < r < 1 , (E.2)
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following section 4.6 of [22]. In general, the solution is given as

A(u) =
2u

π

∫ 1

0
f(t) cos(ut)dt ,

where f(t) is the solution to a Fredholm integral equation of the second kind,

f(x) +

∫ 1

0
K(x, t)f(t) = g(x) ,

with

g(x) =
d

dx

∫ x

0

uh(u)du√
x2 − u2

.

The kernel K is given in terms of k(u) by

K(x, u) =
1√
2π

{Kc(|x − u|) + Kc(x + u)} ,

with

Kc(ξ) =

√

2

π

∫ ∞

0
k(t) cos(ξt)dt .

F. Numerical calculations

In this appendix we outline the numerical methods used to solve the integral equation (3.7).

We solved this equation using the Nyström method (e.g. [27]). This method consists of

discretizing the interval and integrating using numerical quadrature. To ensure the validity

of our numerical results we checked that the number of points in the discretization was

sufficiently large so that increasing it did not affect the results, and by checking that the

matrix that must be inverted in this method is not nearly singular. The Nyström method

has been applied before to integral equations similar to (3.7) in fluid mechanics [28]. The

equation (3.7) with n = 1 arises in [28] as a limiting case in the analysis of waves radiated

from an oscillating submerged disk. Although in [28] Gauss-Legendre quadrature was

used, we found that in our case the solution was accurately produced by simply using the

midpoint rule. By extrapolating the numerical solution we found that the ratio f
(0)
κ /f

(2)
κ →

2 as κ → 0. Using these results we were also able to estimate

∆(κ) − κ +
2

3
κ3 = 2κ

(

f
(2)
κ (1)

f
(0)
κ (1)

− 1

2

)

,

finding that for small κ this had the form −0.7κ2 ln(κ). We obtained an approximate

form for q(κ) by doing a straightforward numerical integral of the solution. Similarly, we

obtained an estimate of (C.9) by doing a numerical integral of the solution to the integral

equation to find the potential, φ, and then performing the integral in (C.9) numerically.
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